An efficient method to construct a radial basis function neural network classifier and its application to unconstrained handwritten digit recognition

نویسندگان

  • Young-Sup Hwang
  • Sung Yang Bang
چکیده

Radial basis function neural network (RBFN) has the power of the universal function approximation. But how to construct an RBFN to solve a given problem is usually not straightforward. This paper describes a method to construct an RBFN classifier efficiently and effectively. The method determines the middle layer neurons by a fast clustering algorithm and computes the optimal weights between the middle and the output layers statistically. We applied the proposed method to construct an RBFN classifier for an unconstrained handwritten digit recognition. The experiment showed that the method could construct an RBFN classifier quickly and the performance of the classifier was better than the best result previously reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Recognition of unconstrained handwritten numerals by a radial basis function neural network classifier

Among the neural network models RBF(Radial Basis Function) network seems to be quite effective for a pattern recognition task such as handwritten numeral recognition since it is extremely flexible to accommodate various and minute variations in data. Recently we obtained a good recognition rate for handwritten numerals by using an RBF network. In this paper we show how to design an RBF network ...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

LTF-C: Architecture, Training Algorithm and Applications of New Neural Classifier

This paper presents a new model of an artificial neural network solving classification problems, called Local Transfer Function Classifier (LTF-C). Its architecture is very similar to this of the Radial Basis Function neural network (RBF), however it utilizes an entirely different learning algorithm. This algorithm is composed of four main parts: changing positions of reception fields, changing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 1996